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Abstract: Identifying historical forest disturbances is difficult, especially in selectively 

logged areas. LiDAR is able to measure fine-scale variations in forest structure over 

multiple kilometers. We use LiDAR data from ca. 16 km2 of forest in Sierra Leone, West 

Africa, to discriminate areas of old-growth from areas recovering from selective logging 

for 23 years. We examined canopy height variation and gap size distributions. We found 

that though recovering blocks of forest differed little in height from old-growth forest (up 

to 3 m), they had a greater area of canopy gaps (average 10.2% gap fraction in logged 

areas, compared to 5.6% in unlogged area); and greater numbers of gaps penetrating to the 

forest floor (162 gaps at 2 m height in logged blocks, and 101 in an unlogged block). 

Comparison of LiDAR measurements with field data demonstrated that LiDAR delivered 

accurate results. We found that gap size distributions deviated from power-laws reported 

previously, with substantially fewer large gaps than predicted by power-law functions. Our 
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analyses demonstrate that LiDAR is a useful tool for distinguishing structural differences 

between old-growth and old-secondary forests. That makes LiDAR a powerful tool for 

REDD+ (Reduction of Emissions from Deforestation and Forest Degradation) programs 

implementation and conservation planning. 

Keywords: gap size frequency distribution; old growth forest; re-growth forest; selective 

logging; moist tropical forest; Gola Rainforest National Park; Sierra Leone; MCMC;  

power-law; LiDAR 

 

1. Introduction 

In a world increasingly under anthropogenic pressure, over 300 million hectares of tropical forests 

have been degraded by anthropogenic activity since 1980 [1–3], as reported by the FAO in the report 

on the state of the world’s forests [4]. However, there are many areas where forests are recovering 

from anthropogenic disturbance, due to the abandonment of marginal agricultural lands as rural 

populations migrate into urban areas [5] and because selectively logged forests have little commercial 

value for many years after timber extraction [6]. One analysis suggests that about 850 million hectares 

of tropical forest was at some stage of recovery in 2000 [3]. These recovering forests can be of high 

conservation value [2,7–9] and act as globally-important carbon sinks [9–12]. However, there is much 

uncertainty regarding the changing extent of regenerating forests, their rate and stage of recovery, and 

the influence of recovery on further forest exploitation. Here we propose a tool to assist with  

forest recovery assessments that may be applicable in conservation planning and carbon storage  

assessments [13–15]. Whilst considerable progress has been made in “real-time” detection of logging 

using satellite multispectral sensors [16,17], selectively logged areas can be very difficult to detect 

remotely after only a few years of recovery [1,14,18]. Selective logging is the removal of specific 

trees, of commercial value, and larger than a threshold size [19]. Forest disturbance from selective 

logging may have enduring effects on forest dynamics and composition [2,12,20,21]. Thus, new 

approaches are needed to characterize the structure and diversity of forests recovering from human 

disturbance, given the key role of canopy gaps in forest regeneration processes [22,23] and forest 

biodiversity through creating habitat heterogeneity for forest dwelling organisms (e.g., [24,25]). 

Furthermore, the assessment of regeneration dynamics is critical for the definition of sustainable 

timber extraction schemes; and being able to detect historically disturbed forests could also be 

particularly important for REDD+ projects, because carbon payments are based on measurable 

reductions in forest degradation as well as reduced deforestation [26].  

Forest canopy gaps are a persistent physical result of disturbance in the forest, thus studying canopy 

gaps may shed light on logging history, even where there is a lack of accurate data regarding the extent 

of disturbance. There has been recent interest in the analysis of canopy gaps using airborne Light 

Detection and Ranging (LIDAR) data. This technology produces detailed 3-D point clouds of leaf and 

stem locations within forests, from which canopy surface and terrain models can be produced and then 

sliced into horizontal planes to produce high-resolution maps of gap locations across a range of height 

tiers [27–31]. This extends the traditional definition of a gap from the canopy down to ground  
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level [32]. Ground-based LiDAR was successfully used to measure canopy structure in different types 

of forests (e.g., [33,34]). A recent study [35] compared structural canopy metrics measured using both 

airborne and terrestrial LiDAR scans. They concluded that, while the airborne LiDAR had restricted 

ability to estimate stem volume, both techniques gave similar estimates of canopy height and vertical 

distribution of foliage and leaf area. In contrast to discrete return LiDAR, which is not suitable to estimate 

stem structure, full waveform, both airborne [36–38] and satellite-based LiDAR [39–41] was used 

successfully recently to estimate canopy structural characteristics, such as timber volume and basal area. 

Before the development of these LiDAR-based techniques, few studies had characterized gap 

frequency distributions because of the laborious nature of field-based methods [42]. However, using 

LiDAR data, it was possible to locate the position of nearly six million gaps >1 m2 in an area of 

125,581 ha of lowland Amazonian forest in Peru [28]. Studies of gap size distributions using LiDAR 

have generally found that these distributions followed a power-law, with a scaling exponent that varied 

with disturbance regime (e.g., [27–29]). If selectively logged forests have distinctive gap 

characteristics that are preserved, to some extent, late into the recovery process, then the finely 

resolved structural data from LiDAR may be successful in identifying past disturbance where other 

methods have failed. 

Here we use airborne LiDAR imagery to explore whether selectively logged forests in West Africa 

that have been recovering for at least 23 years, could be distinguished from old-growth forests in terms 

of gap size distributions and height characteristics. We compare four contiguous patches of moist 

tropical forest, three of which were selectively logged in 1960–1989, and one of which is old growth. 

Although few records have been kept (which is typically the case in developing countries; [43]), we 

know that logging concessions granted the removal of large timber trees (>50 cm stem diameter) 

whilst retaining smaller trees and less-favored species. We hypothesized that: (1) the top height of 

logged forest would be lower than that of old-growth forest, even after 23 years of recovery [12];  

(2) the total area of gaps (hereafter “gap fraction”) within a given height tier of the canopy would be 

greater in recovering forest; (3) gap sizes would be power-law distributed and the power-law exponent 

will be most negative in old-growth forest, because large gaps are less common in this forest type; and 

(4) some ground-level canopy gaps created by selective logging would endure for many years resulting 

in an altered gap size distribution. We then use our conclusions from these analyses to propose a novel 

way to map the forest according to disturbance history. We ground-truth our remote sensing results 

using data collected from an extensive network of permanent inventory plots [44]. 

2. Experimental Section  

2.1. Study Area 

Gola Rainforest National Park is located along the border between Sierra Leone and Liberia, West 

Africa, between 7°18ʹ and 7°51ʹN and 10°37ʹand 11°21ʹW (Figure 1). It is one of the largest tracts of 

intact lowland forest in West Africa. The forest accommodates over 300 tree species and is the habitat 

of a large number of animals threatened by regional forest loss and degradation [44,45]. Annual 

precipitation is 2500–3000 mm, mostly falling in a wet season between May and October. Around 

30% of Gola forest was selectively logged between 1960 and 1989 (logging mostly consisted of trees 
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>50 cm DBH), but most detailed records have been lost [44]. Our study concentrated on a stretch of 

forest of ~16 km2 in the central region of the park. Within the study area, we manually delineated four 

3 km2 blocks within the extent of the LiDAR swath for analysis (Figure 1). The three western blocks 

were selectively logged (9 km2), and timber was processed at a sawmill located just outside the 

northwest corner of the study area. The most easterly of these three blocks (hereafter Block 2), which 

was furthest from the mill, was less heavily logged (according to a former employee of a logging 

company interviewed by D.A. Coomes and J. Lindsell). The central (hereafter Block 3) and the western 

block (hereafter Block 4) were closest to the sawmill, and presumably suffered the heaviest logging, 

The eastern block (hereafter Block 1) was considered old-growth forest (3 km2). Commercial logging 

has now ceased, although there has been some small-scale felling near villages to the west.  

 

Figure 1. (a) A map showing the boundaries of Gola National Park (black) and the study 

area (grey); (b) division of the study area into equal-area blocks for the gap size frequency 

analyses, with forest types shown (see [46] for details); (c) a canopy height model derived 

from LiDAR cloud point; and (d) estimated gap fractions within the 14–15 m height tier, 

estimated from the LiDAR point cloud, in 0.25 ha sub-blocks. The blocks were numbered, 

from east to west: 1, unlogged block; 2, eastern logged block; 3, central logged block;  

and 4, western logged block. 
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It should be noted that since our dataset consisted of a single LiDAR swath over a continuous 

stretch of forest, with logged forests at one end and intact forest at the other, it is possible that canopy 

changes we observe along the east–west gradient are not entirely attributable to logging [47].  

We found that aspect, slope and rainfall did not vary across the swath and thus we did not account for 

them in further analyses; although we lack detailed soil type information, it is not thought to vary 

systematically across the survey areas. However, we cannot completely rule out the possibility of an 

unobserved covariate. The generality of our study will only become apparent with time, when 

summary statistics from future LiDAR surveys are compared with ours, perhaps using a meta-analysis 

approach. For the moment, test statistics reported here need to be treated with caution, because within 

“treatment” replication is used in comparisons [47].  

2.2. LiDAR Data 

LiDAR data of the study area were collected during 20–22 March 2012, using discrete returns from 

an Optech ALTM Gemini device, with high pulse densities used to penetrate the dense forest canopy 

(>10 pulses per m2). Data were processed using TIFFS software [48] to produce a canopy height model 

(CHM) and, from the ground returns, a digital elevation model (DEM), both at 1 m spatial resolution. 

The elevation, aspect and slope of each 1 m pixel was extracted from the DEM using ArcGIS [49]. 

2.2.1. Canopy Surface Height 

We analyzed factors affecting canopy surface height, the most obvious measure of forest recovery 

from disturbance, using multiple linear regression. We selected 1000 random locations throughout the 

study area and calculated the mean canopy height of a 10 × 10 m pixel “neighborhood” centered on the 

sampling location. Mean elevation, aspect, slope and topographic position index [50] were calculated 

for each neighborhood, and used as explanatory variables alongside a binary variable indicating 

whether the location was within one of the blocks subjected to logging. We used least-squares 

regression in R version 2.15.2 [51] to estimate the effect of explanatory variables on canopy height, 

using F-tests to select a minimum adequate model. To compare between canopy surface heights in the 

different blocks, we calculated the mean and standard deviation of the CHM within each block. 

2.2.2. Gap Size Distribution 

For the gap-size distribution analyses, we resampled the CHM at a horizontal resolution of 3 × 3 m, 

and made 9 m2 the minimum gap size we detected. We chose not to work with 1 m2 gaps (cf. [27,28]) 

because laser pulses are angled at up to 20° from the nadir by the LiDAR device, and this can result in 

biases when detecting small gaps [52]. We analyzed the distribution of canopy gap sizes in each 1 m 

height tier in the logged and old growth sections of the study area, following the methodology of [27]. 

We divided the canopy height data into 1 m height tiers, between 2 and 22 m. At each height tier, 

discrete groups of unoccupied pixels surrounded by filled pixels were defined as canopy gaps; these 

gaps were recognized as polygons by ArcGIS version 10 (Figure 2), and the same software was used to 

measure the sizes of all gaps found in each height tier [49]. The reason for analyzing gaps only to 22 m 

height is that gaps start to coalesce above this height, with a marked decrease in gap frequency.  
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Figure 2. A section of the forest in Gola, represented by LiDAR-derived CHM, showing 

gaps (delineated by dark line) at the 10 m height tier (left) and 20 m height tier (right), in the 

same location. Cold colors represent taller canopy and warm colors represent shorter canopy. 

Recent studies have fitted a discrete power-law distribution (known as a zeta distribution) to gap-size 

frequency distributions [27,28]. The probability distribution function (PDF) of a zeta distribution is: 

݂ሺܣሻ ൌ
ିܣ

Ϛሺλሻ
 (1)

where A is gap size (an integer, m2), െλ is the scaling exponent (λ  0ሻ, and Ϛሺλሻ is a normalization 

function, ensuring the probability density function sums to 1 over all values of A. The expected 

number of gaps of size A is given by ݊ሺAሻ ൌ  ሻ, where N is the total number of gaps. Theߣఒ/Ϛሺିܣܰ	

log–log transformation gives the familiar power-law function: 

logሺ݊ሺܣሻሻ ൌ α െ λ logሺܣሻ (2)

where α ൌ log	ሺܰ/Ϛሺλሻሻ. None of the recent LiDAR studies has checked whether a power law was the 

statistically best-supported function to describe the frequency distribution. A simple test is to plot 

logሺ݊ሺܣሻሻ against logሺܣሻ and observe whether the data fall along a straight line. Our examination of 

the plots presented in [27–29] suggested downward curvature in some instances, so we tested for 

deviations from a power-law distribution by introducing a quadratic term: 

logሺ݊ሺܣሻሻ ൌ ߙ െ λ logሺܣሻ െ βሺlogሺܣሻሻଶ (3)

where β is a quadratic modifier (β >0; cf. [53], and n(A) is the expected number of gaps of size A. The 

probability density function for this modified power function is:  

pሺܣሻ௭ ൌ τିܣሺାஒ ୪୭ሺሻሻ (4)

where τ	is a normalizing constant that ensures that the probability of all possible outcomes is 1 when 

summed over all gap areas sampled, even if the data are truncated (i.e., minimum area > 1). The z 

subscript indicates this is the PDF for height tier z above the forest floor. 

We used a Bayesian Markov Chain Monte Carlo estimation to estimate the values of λ and β for the 

four blocks, using the FilzbachR package [54]. At each iteration of the search algorithm, we calculated 

the sum of ିܣሺାஒ ୪୭ሺሻሻ across all possible values of A, in order to calculate τ. We used uninformative 

priors, a burn-in phase of 20,000 iterations and a sampling phase of 50,000 iterations; we sampled 

tier tier
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every 50th iteration to generate the posterior distribution. In order to test for the convergence of 

parameter values, we plotted three chains sampling the posterior distribution.  

To test whether the modified power function had stronger statistical support than the power 

function, we compared the alternative models using BIC (Bayesian Information Criterion; [55]. We 

also tested whether logged vs. old-growth forests had different size-frequency distributions by fitting a 

single model to all four blocks and comparing that with models fitted to the blocks individually. Using the 

predictions of the separate block model, we estimated gap fractions per height tier in the different blocks. 

2.3. Canopy Height and Gap Fraction Estimates from Ground Sampling Plots 

We compared our LiDAR-derived statistics with gap fractions and height metrics estimated from 

permanently marked inventory plots from across the Gola reserve in order to both validate our LiDAR 

analyses and compare them to a wider area of continuous forest. The ground data were collected from 

a gridded network of 697 permanent plots, each of 0.125 ha, established within Gola Rainforest 

National Park in 2005–2007 to provide unbiased estimates of carbon stocks (see [31] for details). Each 

plot was geo-located using a hand-held Garmin GPS device. To increase accuracy, the device was 

allowed to re-sample the location for as long as the team stayed in the plot and the location was 

determined using the average reading from each plot. Prior to our study, 266 of the inventory plots had 

been classified as old-growth, 119 as having undergone well-managed logging and 166 as having 

undergone poorly-managed logging. The rest of the plots were classified as disturbed and were not 

included in the analyses, as the LiDAR data did not include areas that fitted that disturbance category. 

Classifications were based on expert knowledge of the logging history [44]. Stem diameters at breast 

height (DBH), or immediately above buttresses, of all trees >30 cm DBH were measured in these plots. 

In addition, the diameters of trees >10 cm DBH were measured within 0.0125 ha subplots. The dataset 

consisted of 8771 trees (307 species) of which 6471 trees (253 species) were found in the 0.125 ha 

plots, and 2300 trees (232 species) in the 0.0125 ha sub-plots. Frazer et al. [56] showed that plots of 

that size (0.125 ha) provide reasonable ground truth data for LiDAR studies. Of those 697 plots,  

20 were located inside our study area. 

The mean canopy top height of each plot was estimated from the height and crown dimension of 

constituent trees. First, we fitted allometric relationships to 348 measurements of DBH, height and crown 

diameters from 56 species collected in Gola [57]. We fitted allometric (i.e., log–log) relationships 

between height and DBH and between crown diameter and DBH in FilzbachR, using hierarchical 

modeling to allow species to have different intercepts drawn from a normal distribution whilst keeping 

the allometric slope constant among species. Secondly, we used these allometric relationships to predict 

the crown diameter and height of all recorded trees in the 697 plots (8770 trees); species-specific 

allometries were used to make these predictions for 56 species (16% of trees) while mean allometric 

coefficients were used for the remaining species. We then assumed that crowns were truncated spheroids 

(which [58] argue is realistic for temperate angiosperm trees) and by integration determined the vertical 

distance from the tree top at which cumulative crown area was half the total crown area, which we 

assumed to be the “effective” height of trees, as viewed by LiDAR; we lacked information about the 

precise spheroid form of Gola trees, so used information from studies published elsewhere (see [58,59] 

and Supplementary Information), from which we calculated that (effective height) = 0.84 × (tree height). 
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Finally, the effective height of each tree was weighted by its proportional contribution to total crown area 

to calculate the mean canopy top height. This refinement of the mean Lorey’s height (height weighted by 

tree basal area) gave height estimates for all field plots (n = 697) including those within the LiDAR survey 

(n = 20). We also estimated the vertical profile of canopy gap fraction from field-plot data, and used these 

profiles to compare the effects of different management regimes. For each of the permanent field plots, we 

estimated crown areas and heights of all recorded trees from their stem diameters (DBH > 10 cm), as 

described above. For a given height tier (>11 m height), we then summed the crown areas of all trees 

taller than that height, and divided by ground plot size to get cumulative crown area per unit ground area 

(CCA). Using results from the old-growth plots, we related the mean CCA in each height tier to the mean 

gap fraction estimated by LiDAR for the same height tier, using least squares regression. This gave us an 

equation for converting CCA values to gap fractions. We applied this equation to estimate gap fractions 

in well- and poorly-managed logged forests across the permanent plots. Note that the old-growth  

gap-fraction curve obtained from plot data is practically identical to that obtained from LiDAR data 

because the latter data were used to generate it. The approach is useful, nevertheless, for comparing the 

effects of management on gap fraction. Overall, we measured and assessed several canopy structural 

features using both field data and LiDAR derived data, including canopy surface height, gap fraction (the 

percent of the area in the canopy consisting of gaps), and gap size distributions. See Table 1 for a 

comprehensive list of variables [34,44,57]. 

Table 1. A list of canopy structure variables used in the study, including field- and  

LiDAR-based estimates of canopy height and gap fraction.  

Variable Data Source Variable Description 
LiDAR Canopy  
surface height 

LiDAR 
The mean height of the canopy as extracted from the first returns of  
the LiDAR point cloud over the entire 3 km2 blocks, at 1 m2 resolution  

Field Canopy  
surface height 

Field plots [44]  

The heights and crown areas of all tagged trees within a plot were estimated  
from diameters using site- and species-specific allometries [57].  
The height of each tree was weighted by its proportional contribution to  
the total crown area when calculating mean canopy surface height  

LiDAR  
Gap fraction 

LiDAR 
Total area of gaps per height tier in the canopy height model,  
divided by block area (3 km2) 

Field  
Gap fraction 

Field plots [34] 
Evaluation of gap fraction in the field plots, by summing crown areas of  
all trees in the plot, and subtracting it from plot size 

Gap size  
distribution parameters 

LiDAR 
The scaling exponent (λ) and quadratic modifier (β) of the gap size  
frequency distribution, estimated using an MCMC sampling procedure 

3. Results and Discussion 

3.1. Results 

3.1.1. Canopy Height 

We found a significant difference in mean canopy height between recovering and old-growth forest. 

The emerging linear model was 

Canopy	height ൌ 24.43 െ 0.88 ൈ elevation െ 0.69 ൈ logging	status (5)
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where logging status is a binary variable indicating whether the sampled location was logged or not, 

and elevation is scaled (i.e., mean of zero and standard deviation of one), to allow direct effect-size 

comparisons. However, although there was a statistically significant difference in height (Figure 3) at 

1000 sampled locations (F1, 994 = 10.4, p = 0.001) the model had low explanatory power (R2 = 0.03) 

and the effect size was small and only apparent in the western blocks in which logging had been 

heaviest. Mean heights (± standard deviation) were 22 ± 6.7 m, 23.6 ± 6.2 m and 25.8 ± 5.9 m in 

Blocks 4, 3, and 2, respectively (west–east logged blocks), compared with 25.6 ± 5.7 m in the  

old-growth Block 1. Permanent plot data showed a similar pattern with mean crown-area-weighted 

heights slightly lower in disturbed and over-logged plots (20.5 ± 5.8 m and 20.6 ± 5.8 m, respectively, 

after correcting for crown shape by multiplying by 0.84) than in well-managed and undisturbed plots 

(22.0 ± 5.8 m and 22.7 ± 5.8 m, respectively, after shape correction). Mean canopy surface height was 

negatively affected by elevation (F1994 = 20.8, p = 0.0001) and this effect was more pronounced than 

logging history according to a linear regression model. Within old-growth locations predicted mean canopy 

surface height decreased from 26.5 m to 21.5 m between 300 m and 460 m elevation (the minimum and 

maximum elevations observed). Logging history and elevation were the only explanatory variables that 

significantly influenced canopy height in a multiple regression analyses (at p < 0.05).  

 

Figure 3. (a) Distribution of canopy height frequencies in the recovering logged (open 

symbols) and old-growth (solid symbols) blocks in the study area. The mean heights were 

23.9 and 25.6 m, while standard deviations were 6.4 and 6.9, respectively. Panel (b) is the 

mean weighted height frequency of trees in the permanent field plots. Minimum height (11 m), 

noted by the vertical dashed lines, was dictated by the minimum size of trees measured in 

the plots [44]. Mean weighted height in plots classified as unlogged was 22.7 ± 5.8 m, 

while mean weighted height was 20.5 ± 5.8 m in the plots classified as disturbed. 
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3.1.2. Gap Fraction  

In support of our second hypothesis, gap fraction in Block 4 (western) (6.3% at 10 m) and Block 3 

(central) (3.4% at 10 m height) logged blocks was higher than in the old-growth Block 1 (2.3% at 10 m 

height). In Block 2, which was least affected by logging, the gap fraction was similar to that in the old 

growth block (2.3% at 10m height tier, Figure 4a). To compare gap fractions estimated from field and 

LiDAR data, we fitted a least squares regression to the gap fractions, as a function of height above the 

ground (see Methods section for details). The fitted line followed the function:  

Gap	fraction ൌ 1 െ ሺെ0.44  2.5 ൈ height୧ െ 1.11 ൈ height୧
ଶሻ (6)

Gap fractions estimated using LiDAR were similar to those estimated from field plots, ranging 

between c 0.5% at 2 m height, and c 25% at 22 m height in the unlogged and well-managed logged 

plots, and between c 0.5% at 2m height and c 35% at 22 m height in the heavily logged plots ([31], 

Figure 4b).  

(a) 

 

(b) 

Figure 4. Gap fractions at different height above the forest floor, estimated from  

(a) airborne LiDAR and (b) permanently marked field plots. In the upper panel, curves 

from old-growth forest (solid black line), heavily logged forest (dashed blue and green 

lines) and less heavily logged forest (dashed red line) are shown (corresponding to blocks 

shown in Figure 5). In the lower panel, curves from unlogged sites (solid black line),  

well-managed logged sites (red) and poorly-managed logged sites (blue) are compared 

(minimum height = 11 m because only trees >10 cm DBH were recorded in the plots). We 

adjusted the estimates of gap fraction to account for overlap between individual tree 

crowns, by fitting them with the curve parameters extracted from LiDAR derived gap 

fractions. Gap fraction estimates indicate that the well-managed logged areas recovered 

back to their state prior to logging in terms of gap fraction. 

Height Tier (m)



Remote Sens. 2015, 7 8358 

 

3.1.3. Gap-Size Distributions 

The hypothesis that gap sizes are power-law distributed was rejected. A modified power-function 

was much more strongly supported at most height tiers, except 2 and 4 m above the ground, where the  

power-law model was slightly superior (change in Bayesian Information Criterion (BIC) of 1.4 and 

0.6, respectively; Figure 5). The models using the modified power law performed better in terms of the 

BIC, with the change ranging between 0.6 and −678. Changes in BIC greater than 10 are considered 

substantial [60]. The deviations from a power law had a large impact. At the 10 m height tier in the  

old-growth block, the simple power-law predicted 27 gaps/km2 (gaps ≥ 100 m2), while the modified 

power-law model predicted no gaps at all above this size threshold. Generally, deviations from a 

simple power-law were greater in the lower height tier (the modifier parameter β had relatively more 

negative values), indicating that large gaps were less frequent in the lower height tiers than expected 

by a simple power-law (Figure 6). 

(a) (b) (c) 

Figure 5. Predicted (lines) and observed (points) frequencies of canopy gap sizes per km2, 

in the four blocks in Gola, at 2 m (a), 10 m (b) and 22 m (c) canopy height tiers. Grey 

represents block 1; green is block 2; red is block 3; and blue is block 4. Lines are based on 

the modified power-law distribution function with quadratic term. Lines represent predictions 

using 100 values selected randomly from the posterior distribution of model parameters. 

The fourth hypothesis that old-growth forest would have a different gap size distribution compared 

to logged forest was supported by the scaling parameter (λ) values being generally higher for logged 

(1.26–2.51) than unlogged forest (1.26–1.65), particularly in the lower height tiers of the canopy  

(Figure 6a). Model selection statistics showed differences in BIC ranging between 4.5 (the traditional 

power-law model is slightly superior) and −18.4 (the modified model is substantially better), according 

to the height tier. The scaling and modifier parameters (λ and β, respectively) of the modified  

power-law model, using a separate model per block, varied among height tiers and gap sizes  

(Figure 6). The log–log transformed plots of the gap size frequency distributions predicted by the 

modified power-law model revealed that the differences between the recovering logged and  

old-growth blocks were greatest in the lower height tiers, and decreased with increasing height above 

the ground, in support of hypothesis four. At 10 m height, the predicted frequency distribution function 

of the old growth block converged with the predicted frequency distribution function of the eastern 

logged Block 2. At 22 m height above the ground all blocks had similar gap size frequency 

distributions (Figures 5 and S1). 



Remote Sens. 2015, 7 8359 

 

 
Figure 6. Values of λ (top panel) and β (bottom panel) estimated by fitting a modified 

power law function to the frequency distribution of canopy gap sizes observed at various 

heights above the forest floor, in four forest blocks in Gola National Park, Sierra Leone. 

Points are mean λ and β values estimated for a range of height tiers within the canopy; bars 

denote 95 % credible tiers. Color scheme follows Figure 5. 

3.1.4. Mapping Areas of Forest Recovering from Disturbance 

The foregoing analyses were used to select the 14 m height tier as an intermediate canopy height for 

which differences in gap fraction were relatively large. We calculated the gap fraction at this height 

tier for each 0.25 ha sub block within the study site, and classified the results into 5 levels, using 

natural breaks. The resulting map (Figure 1d) revealed that the number of these sub-blocks that had at 

least 30 % gap area at 14 m height (i.e., the two highest gap fraction categories) increased from nine in 

the unlogged block to 27 in the eastern logged block. In the central and western logged blocks, such  

sub-blocks covered substantial parts of the area of the block, emphasizing the value in using this gap 

fraction to identify an historic logging intensity gradient.  

3.2. Discussion 

3.2.1. Canopy Height 

Structural recovery of forests from disturbance depends on the severity of disturbance and the time 

since it occurred, but rates vary considerably with forest type and environmental factors [61,62]. The 

mean canopy surface height of selectively logged forest in our West African study was only slightly 

Height Tier (m)
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lower than that of old-growth forest after a quarter century since the termination of logging, and virtually 

indistinguishable in the less-heavily logged block (Figure 3a). These findings were strongly corroborated 

by field measurements taken in 697 permanent forest plots in Gola (Figure 3b), distributed over a larger 

area than the LiDAR survey, and over a wider range of disturbance intensities, ranging from old-growth 

forest to very disturbed plots. This accords with results from elsewhere. After just five years of recovery, 

Villela et al. [63] reported that canopy height was the main difference in canopy structure between 

disturbed and undisturbed stands in an Atlantic forest in Brazil. Okuda et al. [64] also found that the 

canopy of a dipterocarp forest recovering from selective logging in Malaysia had a distinct height 

distribution compared with old-growth forest after 23 years of recovery, although mean heights differed 

by only 2.6 m in that case. Fifty-five years after logging, Brearley et al. [65] reported complete recovery 

of canopy structure in a secondary mixed lowland forest consisting of tropical rain forest and heath forest 

in Central Kalimantan, Indonesia. A meta-analysis of structural forest recovery studies [12] found that 

different structural components of forests recover at different rates. Above ground biomass took about 85 

years on average. In terms of canopy height, the part of Gola forest we studied had nearly completely 

recovered from selective logging after 25 years. Although we have not investigated how rapidly different 

elements of forest biodiversity and ecosystem functioning recovers from selective logging, a recent 

review suggests that carbon stocks are much faster to recover than biodiversity [12].  

3.2.2. Gap Fractions 

Gap fraction estimated from LiDAR was greater in selectively logged than old-growth forest, in 

concordance with [66]. Higher gap fractions in the lower canopy of recovering forests suggest that the 

persistence of gaps reaching the forest floor may have been caused by removal of the “advanced 

regeneration” (i.e., juveniles of canopy species that grow for many decades in the forest understory) 

during selective logging [67], to facilitate the extraction of timber. In support of that, we found 

significant differences in dbh of trees in logged and unlogged permanent field plots (one-way 

ANOVA, F3,8767 = 15.6, p < 0.001); this is a conservative estimate, as the smallest trees in the samples 

had stem diameters of 10 cm. As regeneration in canopy gaps is often dominated by established 

saplings of shade-tolerant species, taking advantage of improved light and nutrient availability [22,67], 

naturally occurring gaps have a different recovery process than logging-related gaps, in which many of 

these saplings are removed [67,68]. Furthermore, damage to the soil during timber removal has been 

shown to affect regeneration processes in canopy gaps [14,16]. Our results show that these sorts of 

impacts from selective logging can be detected many years after logging as ceased. 

3.2.3. Gap Size Distributions 

Gap size analyses have so far focussed on fitting power laws, and there is a long history of  

power-law functions used to describe catastrophic natural disturbance, such as the scale of damage 

following hurricanes, fires and landslides [69–71]. Kellner and Asner [27] used LiDAR data to report 

that gap-size distributions of four tropical forests, growing in regions with very different natural 

disturbance regimes, were power-law distributed with scaling exponents between −1.6 to −2.8.  

Asner et al. [28] suggested that scaling exponents more negative than −2 are indicative of a forest that 

is more frequently disturbed. We found that indeed gaps in the canopy of selectively logged forest had 
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more negative scaling exponents (steeper slopes) than patches of primary forest in Gola. In our study 

area, the more negative scaling exponents in the logged forest were the result of persistent small gaps 

reaching the forest floor, increasing the frequency of small gaps compared to unlogged forest. 

Furthermore, deviation from a simple power-law was more pronounced in the unlogged block, and 

especially at the lower height tiers, indicating a strong and persistent effect of disturbance on canopy 

structure. It should be noted that this was not always indicated by statistical superiority of the modified 

model. We did find that the traditional power law was statistically slightly better at some lower height 

intervals, however differences were much smaller than the 10 unit difference in BIC usually taken to 

indicate strong support for a model choice [60]. 

The frequency distribution of gaps is linked to the frequency distribution of tree sizes within a  

stand [27,28]. However, deriving a mathematical relationship is challenging and factors other than tree 

size could influence gap sizes, including the spatial configuration of tree canopies within and among 

canopy strata, and the disturbance regime [72]. Multiple tree fall gaps are unusual in the humid 

equatorial tropics, where the death of single trees (or small groups of neighboring trees), is the 

predominant mechanism of canopy gap creation [73–75]. For example, analyses of the gap-sizes within 

ca. 100 km2 of Amazonian forest using satellite imagery indicated that large gaps were very  

uncommon [76]—a power-law distribution fitted to the gap-size distribution had a scaling exponent of 

−2.8, which was much steeper than found by us and indicated that large gaps were extremely rare. This 

pattern was further corroborated by a study of above ground biomass change in Amazonian primary 

forests [77], which used satellite derived analyses of large mortality events [78]. Thus, the theoretical 

basis of gap size frequency distributions requires further research. Most gaps in lowland tropical 

rainforest canopies are small, often being created by single tree fall events [79], whereas disturbance 

(natural and anthropogenic) creates multiple-tree gaps that are slow to infill (see for example [80]).  

4. Conclusions  

We found LIDAR data to be well suited to monitoring of fine scale forest regeneration dynamics (a 

single forest stand), and showed that the gap fraction was sensitive to effects of logging, even 23 years after 

it ceased. This result conforms with previous studies showing persistent impacts of disturbances on forests 

resources [19,81,82], and raising questions about the real sustainability of selective logging practices.  

It is worth noting that differences in canopy height and gap characteristics were detectable only 

when looking at detailed canopy structure using LiDAR. While the use of LiDAR techniques does not 

eliminate the need for field sampling and historical knowledge of the study area, it does assist in 

detecting forest recovery. Here we provide a qualitative estimate of logging history, which we found 

well matched with our knowledge from the field. In order to achieve more quantitative estimates, 

detailed information on logging intensity, including harvest logs, is required. Also, such estimates 

would need to rely on replicated studies, rather than a single case study such as presented here. 

Increasing availability of LiDAR data and computing power are expected to facilitate in making such 

quantitative estimates feasible in the near future. To further generalize our results, usage of additional 

and increasingly available airborne (and other platforms) LiDAR swaths might lead to estimates of 

threshold values for classification of forest recovery. Such threshold may be less dependent on 

knowledge of historic disturbance, and of field sampling. 
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LiDAR is the only instrument to date able to provide detailed three-dimensional information on 

canopy structure, and its data acquisition costs are decreasing fast [83], making it more accessible in 

areas of high economic timber value or high conservation priority.  

The approach presented here offers a relatively new application of LiDAR data, complementary to 

its use for biomass and forest structural assessments [84,85], and for characterizing biodiversity [46]. 

We have shown that it can be used to accurately map recovering forests, even after relatively long 

recovery periods. Such applications may be a very useful information source for studies of additional 

forest processes, such as the recovery of flora and fauna, following disturbances, and for monitoring of 

carbon sequestration for REDD implementation.  
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