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Abstract: Unmanned aerial vehicles are increasingly used to monitor forests. Three-dimensional
models of tropical rainforest canopies can be constructed from overlapping photos using Structure
from Motion (SfM), but it is often impossible to map the ground elevation directly from such data
because canopy gaps are rare in rainforests. Without knowledge of the terrain elevation, it is, thus,
difficult to accurately measure the canopy height or forest properties, including the recovery stage
and aboveground carbon density. Working in an Indonesian ecosystem restoration landscape, we
assessed how well SfM derived the estimates of the canopy height and aboveground carbon density
compared with those from an airborne laser scanning (also known as LiDAR) benchmark. SfM
systematically underestimated the canopy height with a mean bias of approximately 5 m. The linear
models suggested that the bias increased quadratically with the top-of-canopy height for short,
even-aged, stands but linearly for tall, structurally complex canopies (>10 m). The predictions based
on the simple linear model were closely correlated to the field-measured heights when the approach
was applied to an independent survey in a different location (R2 = 67% and RMSE = 1.85 m), but a
negative bias of 0.89 m remained, suggesting the need to refine the model parameters with additional
training data. Models that included the metrics of canopy complexity were less biased but with a
reduced R2. The inclusion of ground control points (GCPs) was found to be important in accurately
registering SfM measurements in space, which is essential if the survey requirement is to produce
small-scale restoration interventions or to track changes through time. However, at the scale of
several hectares, the top-of-canopy height and above-ground carbon density estimates from SfM and
LiDAR were very similar even without GCPs. The ability to produce accurate top-of-canopy height
and carbon stock measurements from SfM is game changing for forest managers and restoration
practitioners, providing the means to make rapid, low-cost surveys over hundreds of hectares without
the need for LiDAR.
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1. Introduction

The effective management of tropical forests is often dependent on high-quality information about
the spatial distribution and condition of forest types [1–3]. Spatial measurements of forest quality are,
therefore, important for prioritizing a range of conservation interventions and are especially critical
in planning restoration work [4]. Globally, there are approximately 1 billion hectares of degraded
tropical forests that have the potential to be restored [5], but active interventions are expensive
and the cost–benefit ratios for different interventions vary with forest condition [6]. In particular,
unmanaged young forests have been shown to sequester carbon rapidly [7], but the diversity and
capital value of these forests (i.e., for timber or non-timber forest products) is likely to be enhanced
through active management [8–10]. Furthermore, the biomass and species composition of secondary
forests can vary considerably over small spatial scales, and conditions can change rapidly during
natural regeneration. Therefore, the planning of appropriate restoration interventions requires the
timely delivery of fine-resolution forest condition data [4].

Airborne laser scanning (ALS, which is also commonly referred to as LiDAR) provides highly
detailed structural information that is widely used in forestry and for assessing forest carbon
dynamics [11,12]. Discrete-return LiDAR devices work by actively emitting laser pulses that detect
canopy surfaces from the uppermost leaves through to the ground, resulting in a cloud of points (point
clouds) that describe the three-dimensional structure of the forests. By building up a ground surface
or Digital Terrain Model (DTM) from ground returns, canopy heights can then be calculated through
a normalisation of the point cloud (i.e., a subtraction of the terrain from the surface; [13]). Ground
returns are far less frequent than those from the upper canopy but are, nevertheless, frequent enough
to measure the canopy height with an accuracy of less than 1 m [2]. Such measurements have produced
accurate maps of the carbon density [12,14], stand structure, and understory condition [15,16] in
tropical forests. However, LiDAR is rarely available to forest restoration practitioners in the tropics
because of the high cost of deploying manned aircraft. Now three-dimensional (3-D) mapping with
unmanned aerial vehicles (UAVs) holds the promise of providing a cheaper and more accessible
alternative requiring minimal training.

Aerial photography from UAVs is being applied in many industries and increasingly in
conservation management, including the mapping of forest structure in restoration projects [17–20].
However, techniques for constructing 3-D forest canopy maps from UAV images lag behind recent
advances in data capture. Digital surface models of similar quality to those produced by LiDAR
can be constructed from high-resolution photographs taken from UAVs, using a technique known as
Structure from Motion (SfM) [21]. The three-dimensional structure of the canopy surface is retrieved
from two-dimensional images because the position of features shared between multiple overlapping
images (of which the locations are known from GPS tags and further resolved during the reconstruction
process) can be estimated in 3-D space, using a process analogous to triangulation. However, by
contrast to LiDAR, structure from motion can have a poor penetrability to the ground level because
canopy openings are too small (a) to allow an equivalent illumination of the ground and canopy, which
results in an underexposure in imagery, and (b) to be viewed from the oblique angles required for
positional triangulation [22,23]. Therefore, ground positions are only identified where gaps of sufficient
sizes extend to the forest floor, and these can be very rare or absent in dense tropical forests. Ground
classification algorithms that follow a process of dividing point clouds into grid cells, identifying the
lowest points, and adding adjacent points according to simple rules [24] will always have a positive
bias in their estimation of ground position (Figure 1). The positive bias in the DTMs produced by SfM,
which results in a negative bias in estimated canopy heights, has raised concerns about the validity of
the technique for measuring forest properties [25–27].
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Figure 1. Cross sections through (a) LiDAR (airborne laser scanning) and (b) Structure from Motion
(SfM) point clouds generated for the same forest area at Hutan Harapan: The points are coloured
according to their unnormalised elevation above mean sea level (AMSL). The solid black and red
lines show the LiDAR- and SfM-measured digital terrain models (DTM). Despite the much higher
point densities generated by SfM, its failure to detect ground points leads to an overestimation of the
ground position and, therefore, an underestimation of the top-of-canopy height (TCH; dashed lines)
when compared with LiDAR. The vertical bars show tree heights, which are negatively biased when
measured by SfM.

Despite the paucity of ground points captured using SfM, it may be possible to correct the
ground position estimates if biases are consistent and predictable. By developing models that use
properties from the digital surface model to predict an overestimation of the DTM/an underestimation
of the canopy height, a correction may be applied to remove the bias. Some studies assessing the
correspondence of SfM and LiDAR canopy height measurements have done so using root mean
squared error (RMSE) only [25,28], which measures the average differences of predictions from the
truth. Yet, if SfM consistently underestimates canopy heights, these measurements will contain both
systematic and random error components, which should be accounted for separately [26]. Measuring
systematic error is straightforward if a dataset without error is available. This can, then, be used to
produce a correction function capable of generalising to new data outside of the training set. This
approach has been used in numerous fields, including field measurements of trees [29]. A recent
study [30] was able to predict the aboveground biomass from numerous structural and spectral metrics
extracted from SfM point clouds using machine learning. However, including numerous metrics is
known to produce overfitted models that fail to generalise to unseen data and novel situations; this is
known as the bias-variance trade-off [31]. Therefore, when including a correction for SfM-based canopy
height assessments, it is preferable to build simple but robust models with metrics that are likely to be
consistent across sites and to demonstrate a high-performance when applied to independent data.

This study, focusing on a regenerating tropical rain forest in an ecosystem restoration concession in
Indonesia, compares the stand level top-of-canopy height and aboveground carbon density estimates
produced by SfM and airborne LiDAR. We calculate the bias in the SfM measurements and use this to
produce a robust correction, assuming that LiDAR provides an unbiased benchmark against which
to compare other approaches. Finally, we trial the ability to apply a correction at an independent
location using a different UAV where LiDAR data were also present. To the best of our knowledge,
this is the first attempt to produce and validate such a correction on independent data. From these
corrected canopy heights, the aboveground biomass can be calculated, which is highly correlated with
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important measures of forest quality, including aboveground carbon stocks [12,32], rates of carbon
sequestration [7], and biodiversity [33,34]. This approach has the potential to greatly increase the
utility of UAV surveys for tracking changes in forest quality and direct restoration without the need
for wall-to-wall LiDAR coverage.

2. Materials and Methods

2.1. Study Site

The work was conducted at Hutan Harapan (trans. Hope Rainforest) on the island of Sumatra, the
first of several Ecosystem Restoration Concessions established in Indonesia. These concessions are an
Indonesian government initiative to lease tracts of heavily degraded forest to private organisations
for long-term restoration. Hutan Harapan is a 98,455 hectare fragment of the lowland forests that
dominated the island prior to the 20th-century agricultural expansion. Long-term experiments at Hutan
Harapan are exploring the effects of various management interventions on reforestation, biodiversity
conservation, capacity for carbon capture, and economic potential [10,35]. Two sites were surveyed:
(1) an 82-ha area, close to the Kapas river composed of an even-aged regenerating stand averaging 9 m
in height (s.d. = 5 m) and with the remainder less even-aged and averaging 15 m in height (s.d. = 8 m)
with many trees taller than 30 m, and (2) a 48-ha area close to the concession’s central nursery, known
as Bato, averaging 17 m in height (s.d. = 8 m). The intersecting LiDAR and SfM canopy height models
are shown in Figure 2.
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Figure 2. The canopy height models measured using (a,c) LiDAR and (b,d) SfM at two different sites in
Hutan Harapan: The general patterns in canopy height are obvious from the side-by-side comparison
as well as the underestimation of the canopy height measured through SfM. The survey at (a,b) Kapas
tenggah was used for training the canopy height correction models, the performance of which was
tested at (c,d) Bato.
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2.2. Photographic and LiDAR surveys

The LiDAR data were collected on 24 October 2014. A Leica ALS70 plus LiDAR device was
mounted within a Pilatus Porter PC6 aircraft and flown at an altitude of 800 m and ground speed of
100 km per hour. The ground points were classified within the LiDAR point cloud using the default
parameters of the LAStools [36] (version 1.2) algorithm lasground, set to “Wilderness” which specifies a
grid size for the initial low-point detection of 5 m and then converted to a 0.33 m resolution DTM raster
using las2dem. A pitfree canopy height model raster was also produced using LAStools following the
method of Reference [37]. At present, this is the most precise method for measuring canopy heights
across landscapes and is, thus, an appropriate benchmark against which to judge the success of our
UAV-based SfM measurements.

The two sites were mapped separately with two different UAVs. The Kapas site was surveyed on
21 March 2016 using a Tarot Ironman 650 multirotor UAV with a Pixhawk Flight controller and Canon
S110 camera using a Canon Hackers Development Kit (CHDK) intervalometer. The UAV was flown at
140 m above ground level (relative to the launch site) with images collected every three seconds. The
images were geotagged post hoc through a fusion with flight logs using ExifTool through the GeoSetter
graphical user interface (https://www.geosetter.de/en/main-en/); correct time-stamp alignment
was achieved by ensuring the position of transect turns that correspond with rotations in the camera
imagery. The Bato site was flown on 16 April 2017 using a 3DR Solo multirotor UAV with a Parrot
Sequoia camera. The UAV was flown at 120 m above ground level with the images collected every
three seconds. Surveys at each location involved four flights and were completed in less than two
hours in total. The images were georeferenced in real-time using GPS information from the Sequoia’s
on-board GPS. In both cases, SfM was implemented in Agisoft Photoscan (version 1.2.4) to produce
point clouds from which DTMs were generated using the Photoscan algorithm for ground classification,
setting the initial grid size to 50 m to ensure the detection of low points and setting the angle and
distance parameters to zero. Smaller grid sizes contained large variations in low-point detection,
whereas large grid sizes were considered inappropriate for capturing topography. After excluding
anomalous low points (i.e., points erroneously located outside the normal point distribution) which
were detected automatically during ground classification in Photoscan, digital surface and terrain model
rasters were generated from classified point clouds at a 0.33 m resolution, and canopy height models
were produced as the difference between these. The data from the Kapas site was used exclusively for
modeling the correction, while the data from the Bato site was used for independent validation.

2.3. Calculating the Correction

The SfM surface model rasters were georeferenced to the LiDAR by manually identifying ground
control points in the LiDAR digital surface model and applying a linear transformation with a nearest
neighbour resampling using the georeferencer plugin in QGIS (version 2.18). The SfM and LiDAR
surface models were cropped to their intersections (80 ha at Kapas and 48 ha at Bato). The canopy
height models were aggregated to the mean and standard deviations in the top-canopy height at a
0.25 ha (50 × 50 m) scale, and any areas with less than a 75% coverage were excluded. This yielded
298 observations at Kapas and 148 observations at Bato. The standard deviation maps were used as
an additional predictor describing the variation in canopy height (V). Digital surface models were
also aggregated to a 0.25 ha scale and used to calculate the topographic position index (TPI) at a

2.25 ha scale (150 × 150 m). The TPI was calculated for each pixel as TPI = x − 1
n

n
∑

i=1
Xi, where x is

the elevation of the focal pixel and X is the vector of elevation values that includes x and all of the
immediately adjacent pixels (n = 9). In this sense, TPI provides a measure of the vertical position
of the canopy relative to the position of the surrounding canopy (T) and is, thus, referred to from
here as the canopy position index; it will be positive on hill tops and when the forest is tall relative
to its surroundings and will be negative for valley bottoms and when the forest is short relative to
its surroundings.

https://www.geosetter.de/en/main-en/
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Two initial linear models were fitted to predict the LiDAR top-of-canopy height from the SfM
top-of-canopy height. These models attempted to explain the basic function of the relationship, which
was clearly nonlinear, without including additional variables. The models were as follows:

yi = β0 + β1xi + εi (1)

y2
i = β0 + β1xi + εi (2)

where y and x are the LiDAR and SfM measured top-of-canopy heights respectively, for each of the
i 0.25-ha locations. In Equation (2), y was squared prior to model fitting in order to address the
nonlinearity. More complex models were also developed to assess the additional predictive value of
including the interactions between the SfM-measured top-of-canopy height, the canopy position index
T, and the canopy height variation V, as follows:

yi = β0 + β1Ti + β2xi + εi (3)

yi = β0 + β1Vi + β2xi + εi (4)

y2
i = β0 + β1Ti + β2xi + εi (5)

y2
i = β0 + β1Vi + β2xi + εi (6)

For each model, the residual error ε was estimated as a normal distribution with a mean of zero
and a standard error of σ. A fivefold cross validation was implemented in the R package Caret (version
6.0-78) to assess the predictive performance as the average out-of-set root mean squared error (RMSE)
and R2 of the prediction across the five folds. Predictions were then made for Bato and compared
against the LiDAR measurements. In order to assess the effect of georeferencing SfM surface models,
we carried out the same comparisons with the LiDAR models both prior to and after georeferencing. As
part of this comparison, we converted the top-of-canopy height measurements (H) to the aboveground
carbon density (ACD) using the following equation developed by Jucker et al. (2017) [14] for Southeast
Asian rain forests:

ACD = 0.567H0.554 A1.081ρ0.186 (7)

where ρ is the wood density, calculated as ρ = 0.385H0.097, and A is the basal area, calculated as
A = 1.12H. This enabled us to assess how the error in top-of-canopy heights is inflated when
converting to biomass. We assessed the performance of the corrections as the R2 of prediction, RMSE,
and bias when comparing observations at the 0.25-ha scale. A linear regression also was used to test
whether a relationship between the bias and topographic position remained in the validation site (Bato)
after correction.

3. Results

Developing the Tree Height Correction Model

The top-of-canopy height measured by SfM was strongly correlated with the LiDAR-measured
top-of-canopy height (Pearson’s r = 0.89) but the SfM measurements contained a substantial error with
an RMSE of 5.08 m, 39% of the mean LiDAR-measured top-of-canopy height (Figure 3). However,
a negative bias of 4.66 m, similar in magnitude to the mean error, made it possible to produce
straightforward but powerful empirical corrections (Figure 3).

Both of the models used to fit the relationship between the SfM- and LiDAR-measured heights
explained a large proportion of the variation (R2

model1 = 79% and R2
model2 = 82%), and the resulting

predictions had a substantially lower RMSE relative to the uncorrected SfM measurements. Model 1
fit the data well on average but overestimated the top-of-canopy height for the shortest canopies
(Figure 3). The linear model fit to the squared SfM measurements (Model 2) increased the R2 of
the prediction by removing the nonlinearity from the relationship, which reduced the bias in the
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estimates for the shortest canopies, but the correction became progressively smaller in magnitude
with the top-of-canopy height (as seen by the model fit approaching the 1:1 line). This suggests
that the top-of-canopy height will be poorly corrected for the tallest canopies, which is problematic
because these contain a disproportionate amount of the aboveground carbon (Figure 3). Because both
models performed well and had desirable properties at different ends of the canopy height range,
they were both used for further model development. The inclusion of the interaction between the
top-of-canopy height and the canopy position index led to small increases in the R2 of the prediction
to 83.0% and 83.2% respectively for Models 1 and 2. Similarly, the inclusion of the interaction between
the top-of-canopy height and the top-of-canopy height variation yielded increases in the R2 of the
prediction to 82.0% and 82.8% respectively for Models 1 and 2.
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Figure 3. The relationship between the top-of-canopy height measured separately by structure from
motion (SfM) and LiDAR as defined using the training site data only. This is presented (a) with both
measurements on the original scale and (b) with the LiDAR measurements squared prior to model
fitting to linearise the relationship. Fitted models with a 95% confidence intervals are show in blue
with light grey ribbons. The 1:1 lines are shown in black.

In out-of-set testing, Model 1 and Model 2 performed similarly in terms of predictive performance
(Table 1). Both models produced vastly improved top-of-canopy height estimates compared with the
uncorrected SfM measurements, reducing the mean error from 5.45 m to less than 1.90 m (Table 1).
The close correspondence between the corrected SfM and LiDAR measurements can be seen in
Figure 4a,b. However, a mean bias of −0.89 m and −0.84 m remained after a correction for Models 1
and 2 respectively. The bias for the tallest quartile of the sampled stands was −1.88 m for Model 1
and −2.54 for Model 2 (Figure 4). The addition of the canopy position index and the canopy height
variation as predictors in an interaction with the SfM-measured top-of-canopy height did improve
the predictive performance in out-of-set testing, although this was fairly minimal with these models
failing to reduce the average error or bias for the tallest quartile when compared with Model 1. Model
1 (linear model estimate = 0.19, t146 = 5.76, p < 0.0001) and Model 2 (linear model estimate = 0.15,
t146 = 4.11, p < 0.0001) both retained significant effects of the topographic position index on bias, while
the inclusion of the canopy position index in Models 3 and 5 removed these relationships. These
models also reduced the average bias by 0.20 m and 0.15 m compared with Models 1 and 2, respectively
(Table 1), but they had a much greater negative bias for the tallest quartile of −2.63 and −2.58 for
Models 3 and 5 respectively.
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Figure 4. The relationships between the top-of-canopy height (a,b) and aboveground biomass (c,d)
measurements from structure from motion (SfM) – after empirical correction – and LiDAR. These
relationships are shown for both the training (black) and testing (red) data sets. Equations (1) and (2)
were used to correct the SfM measurements in the left hand panels (a,c) and right hand panels (b,d)
respectively. The 1:1 lines are shown in black.

The estimates were more accurate compared to the uncorrected SfM measurements after a
nonlinear conversion to aboveground carbon densities. The 31% bias in the uncorrected top-of-canopy
heights was converted into a 45% bias in aboveground carbon density. However, the bias in the
corrected aboveground carbon densities was reduced to only 9% in Model 1 and 7% in Model 3. Despite
an exacerbation of the negative bias for the tallest canopies in Model 2, this was offset by more accurate
predictions for intermediate height canopies (Figure 4) so that the total biomass estimation remained
similar to that generated by Model 1 (Table 1). The improved predictive performance achieved by
adding a canopy position index and canopy height variation as predictors in the interaction with the
SfM-measured top-of-canopy height was translated into a further improvement in the aboveground
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carbon density estimation. Thus, although the error was not reduced by the more complex models, the
bias was, which produced average and total aboveground carbon density estimates closer to those
measured by the LiDAR (Table 1).

Table 1. The out-of-set model validation for top-of-canopy heights and aboveground carbon density
(AGCD). The correction models were developed at a site 5 km away from the site used for testing,
using a different model of UAV with a different camera and surveyed one year earlier. Named models
and fitted functions are presented along with the performance metrics calculated by comparison to the
LIDAR gold-standard at 0.25-ha scale. The total estimates of the aboveground biomass for the entire
study area are also shown. Comparisons are made for the models with and without georeferencing
(no GCPs).

Canopy Height Model
Canopy Height (m)

Mean s.d. R2 RMSE Bias

LiDAR 16.6 2.83 - - -

SfM 11.4 2.63 0.67 5.45 −5.20

Model 1
y = 5.55 + 0.89x 15.7 2.34 0.67 1.85 −0.89

Model 2
y2 = 10.2 + 21.1x 15.8 1.80 0.66 1.90 −0.84

Model 3
y = 5.49 + 0.25T + 0.93x − 0.04xT 15.9 1.93 0.65 1.85 −0.69

Model 4
y = 2.91 + 0.80V + 1.03x − 0.054xV 15.7 1.81 0.64 1.96 −0.90

Model 5
y2 = 1.59 + 0.06T + 22.5x − 0.36xT 15.9 1.53 0.68 1.91 −0.69

Model 6
y2 = 15.1 + 2.56V + 15.1x + 0.61xV 15.8 1.96 0.67 1.84 −0.81

Model 1 no GCPs 15.6 2.43 0.51 2.25 −1.02

Model 2 no GCPs 15.7 1.88 0.51 2.20 −0.95

Canopy Height Model
Above-Ground Carbon Density (Tonnes ha−1)

Total AGCD (tonnes)
Mean s.d. R2 RMSE Bias

LiDAR 56.3 16.1 - - - 8332

SfM 30.7 12.0 0.68 27.2 −25.6 4537

Model 1
y = 5.55 + 0.89x 51.2 12.9 0.68 10.4 −5.07 7582

Model 2
y = 2.91 + 0.80V + 1.03x − 0.054xV 51.3 9.7 0.67 11.1 −5.04 7586

Model 3
y = 5.49 + 0.25T + 0.93x − 0.04xT 52.1 10.4 0.64 10.8 −4.22 7707

Model 4
y = 2.91 + 0.80V + 1.03x − 0.054xV 50.9 9.6 0.64 11.5 −5.35 7504

Model 5
y2 = 1.59 + 0.06T + 22.5x − 0.36xT 52.0 8.2 0.68 11.2 −4.34 7690

Model 6
y2 = 15.1 + 2.56V + 15.1x + 0.61xV 51.5 10.7 0.68 10.5 −4.83 7717

Model 1 no GCPs 50.6 13.4 0.53 12.5 −5.71 7487

Model 2 no GCPs 50.7 10.1 0.52 12.5 −5.60 7502
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A failure to georeference the SfM models led to a reduced correspondence with the LiDAR
measurements, revealing the lower spatial accuracy of structure from motion without ground control
points relative to LiDAR (Table 1). Despite this, the corrected average and total aboveground carbon
density measurements remained very similar, both with and without georeferencing (Table 1).

4. Discussion

Our study demonstrates the high precision of 3-D information created by Structure from Motion
(SfM) using photographs taken with Unmanned Aerial Vehicles (UAVs). The stand-level structural
attributes, including top-of-canopy height and aboveground carbon density, were accurately measured
from these models once the systematic bias, arising from a lack of ground observations, was accounted
for. The uncorrected SfM top-of-canopy heights were substantially underestimated, assuming LIDAR
gives reliable measurements, as has been shown previously [27,28,30,38]. SfM is undoubtedly poor at
detecting ground points in a closed canopy forest [22,28], but its effectiveness at reconstructing 3-D
surfaces [26,39], coupled with the predictable manner in which top-of-canopy height is underestimated,
make this problem straightforward to address. While previous assessments of forest heights have
suggested that SfM is prone to excessive error [25,40], we have shown that this is primarily comprised
of bias that can be almost completely removed by our corrections [41]. LiDAR-measured top-of-canopy
heights were predicted from SfM with error rates of only 7%, as validated on an independent data set.
This has an enormous potential for enabling forest managers and restoration practitioners, who do not
have access to full coverage LiDAR surveys, to make accurate measurements of forest resources [4].

4.1. Improved Accuracy of SfM Measurements

The top-of-canopy heights were underestimated by SfM but the bias was consistent enough
to enable a correction [41]. Two linear models were produced that generated excellent fits to the
training data but suggested different bias patterns. The model that predicted untransformed LiDAR
top-of-canopy heights (model 1) indicated that bias was at a maximum of 5.55 m for the shortest
stands and decreased by 0.11 m for each additional metre of height (Figure 3a); consequently, the
average bias was 3.35 m for 20-m tall stands. The model that predicted squared LiDAR top-of-canopy
heights (Model 2) indicated a nonlinear bias, with a minimum close to zero at the ground (i.e., when
vegetation was absent) which increased to a maximum of 5.57 m for 10-m tall stands and decreased
thereafter (Figure 3b). Although Model 2 produced a slightly better fit to the data (R2 increased from
79% to 82%), the linear nature of Model 1 makes it more robust in taller stands, whereas Model 2 will
always overestimate the top-of-canopy heights for stands taller than 21.5 m (as can be seen by the
intersection of the 1:1 line in Figure 3b). This is important because Southeast Asian forests are known
to have top-of-canopy heights up to 50 m [14] that would be substantially overestimated (average
error resulting from the correction would be 236%). Including taller stands during model development
should ameliorate this issue but at the expense of accuracy for the shortest stands. Alternatively
nonlinear models that better describe the bias relationship with the top-of-canopy height may provide
the best of both models. Nevertheless, Model 2 makes good sense mechanistically: After clearance,
lowland tropical forests exhibit a pulse of rapid growth that produces homogeneous dense swathes of
vegetation; the structural complexity then increases through a combination of differential growth and
mortality-induced gap formation (e.g., References [28,42] and references therein). The occlusion of
ground and lower canopy observations increases as the bare ground transitions to early successional
vegetation but then decreases as stands transition towards structural complexity. This occurred once
the top-of-canopy height exceeded 10 m at our site in Indonesia. This finding confirms that SfM
top-of-canopy height bias is greatest in the shortest stands, but when both DTM and canopy errors are
combined, rather than canopy errors alone, the bias is negative rather than positive as found by Roşca
et al. (2018) [43].

The corrections we developed produced excellent estimates of the top-of-canopy height and
biomass at an independent location not included during the model development. This demonstrates
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the generality of our approach even to sites where LiDAR data are not available. Despite using a
different UAV, with a different camera and flight parameters, the top-of-canopy height was estimated
with the R2 of prediction values of 67% and 66% for Models 1 and 2, respectively, and RMSEs of
1.85 m and 1.90 m (Table 1), respectively. The negative bias (approximately 0.9 m) that remained
suggests that our correction may not be stable across sites and could be improved by using training
data drawn from a greater diversity of sites, which remains a major limitation of most studies that
predict canopy properties from SfM data (e.g., References [30,41,44–46]). The quadratic relationship
may be less stable than the linear relationship across sites. Despite the prediction that Model 2 would
produce overestimates for the tallest canopies, the reverse was observed, with a gross underestimation
amplified during nonlinear conversion to aboveground carbon density (Figure 4b). This suggests that
Model 1 generalised better to new areas and was more robust to conversion to aboveground carbon
density. More complex Models (3–6) including interactions with the canopy position index and canopy
height variation, suggested fairly subtle improvements that did not, in any case, improve both the
mean error and bias compared with the simple models. However, Models 3 and 5, which included the
canopy position index removed residual biases related to the topographic position which were not
removed by Models 1 and 2. This suggests that topographic position is important in determining SfM
bias, with a greater negative bias in valleys and less bias on ridge tops, which may be caused by DTM
truncation due to the large size of the grid used during the development of the triangular irregular
network (50 m). A similar study comparing LiDAR and SfM canopy height models in Cambodian
forests found that SfM DTMs were of insufficient accuracy, but this may have in part been caused by
the small grid size used (10 m), leading to a failure to reliably detect low points [40]. This highlights a
trade-off between low-point detection and topographic truncation that requires further investigation.
An alternative explanation is that ground occlusion is more pronounced in valley bottoms than on hill
tops due to a combination of canopy and topographic features and is further exacerbated where the
point density is low [47]. LiDAR surveys are also affected by these errors [26,48] but can be corrected
using probabilistic models that account for differences in the ground detection, which is specific to
the sensor [47]. As far as we are aware, no such models have yet been developed for SfM. However,
an estimation of stand properties from SfM were improved in sugarcane when UAV survey transects
were undertaken in both the North-South and East-West directions, probably as a result of improved
ground detection from multiple viewing angles [49].

Recent studies have demonstrated that machine learning approaches can predict tree and
stand level properties, including the aboveground biomass and leaf area index, from a diverse set
of summary statistics derived from spectral and structural measurements obtained through SfM
(e.g., Reference [30,44–46]). Yet, while these approaches are clearly effective at predicting held out
observations, which are effectively subsets of the training data, they probably require considerable
development to generalise well to new conditions and survey equipment. Our approach is far simpler,
relying solely on the assumption that a canopy height underestimation at the stand-level changes
predictably with the top-of-canopy height. This has been demonstrated for point measurements of
sward height in grassland [50] and stand height in Maize [30]. However, our approach generated more
accurate predictions across the gradient of stand heights, which was likely achieved by correcting
a stand level (0.25 ha) property (i.e., top-of-canopy height) rather than point measurements [50]. It
may be desirable to measure the top-of-canopy height at smaller scales, but it is likely that a variation
in point cloud density, vegetation density, and topographic features will be greater at smaller scales,
causing the relationship to break down [27].

4.2. Application in Other Forest Types

Our approach should generalise well across fairly similar conditions, but the canopy height bias
relationship will probably need to be calibrated for specific forest types. This relationship is likely
to depend on the configuration of gaps and canopy density which affect the depth and frequency
at which the ground approximations are made [22]. SfM has been shown to accurately measure the
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top-of-canopy height of young plantations [23], open dry forest [26], open woodland [41], and forest
fragments [28], where ground observations are abundant. The challenge is much greater in closed
canopy forests, such as primary lowland tropical forests [43], which exhibit top-of-canopy heights
in excess of 50 m [14] and have leaf area indices in excess of 6 m2 m−2 [51], where observations of
the lower canopy may be extremely scarce. Our predictions may have been aided by the structural
information provided by remnant trees, taller than 30 m, emerging from a canopy averaging 15m in
height. In contrast, the greatest errors occurred in dense stands approximately 10 m in height. It is
likely that the lack of structural complexity prevented the detection of low points, closer to the ground.
In these situations, a machine learning approach that combines structural and spectral features to
predict canopy height may prove more effective [30,44,45].

4.3. The Value of Ground Control Points

Failing to include ground control points (GCPs) reduced the correspondence between the LiDAR
and the SfM estimates at the 0.25-ha scale, but the average and total above-ground carbon densities
were robust even without GCPs. Accurate ground control points are essential for georeferencing SfM
point clouds. They ensure that 3-D surfaces are correctly registered in space, and without them, vertical
errors have been shown to increase according to a quadratic function with distance to the nearest
GCP [52]. However, they can be hard to deploy in tropical forests where access is challenging and
closed canopies limit their observation, and although GPS positions with differential correction can
be accurate to 0.1 m, the error from typical handheld devices may exceed 10 m [28,53]. Our results
indicate that GCPs are unnecessary if the main goal is to measure aboveground carbon densities at
the scale of several hectares. However, if the goal is to track changes throughout time or to make
measurements at smaller scales, e.g., to identify where active restoration activities need to take place [4],
then a greater effort to accurately georeference SfM models is needed. One exciting option is to correct
UAV-acquired geolocations using differential carrier-phase positioning to a precision of 2–3 mm. This
approach has been shown to be highly effective for developing accurate models of ice flows using SfM,
where the deployment of GCPs is impossible [54]. These systems are fairly expensive at present, and
the coverage of the global navigation satellite system (GNSS), necessary to obtain this precision, is
predominantly limited to the northern hemisphere, but an expansion to the equatorial and southern
regions is expected in future.

5. Conclusions

Efforts to assess the extent to which LiDAR canopy height measurements can be replicated using
stereo photogrammetry are now close to twenty years old [55]. Here, we have shown that they
can be approximated by SfM with less than 2 m of error and 1 m of negative bias after correction.
Our approach was capable of generalising even to previously untested survey equipment and forest
conditions. In general, we favored a simple linear model to predict LiDAR from SfM top-of-canopy
heights to avoid the overestimation issues of quadratic models but suggest that developing nonlinear
models may be a fruitful next step. By including metrics that described canopy position and variation,
small improvements were achieved in some aspects of prediction; in particular, residual errors caused
by topography were removed. However, while they enabled a greater sensitivity to local sources
of error, they did not improve both the bias and error on average across all locations. Adopting a
simple correction, based upon top-of-canopy height alone, ensured an accurate prediction at the stand
level (several hectares) [41], useful for measuring carbon stocks and directing restoration activities [4].
However, it is clear that other sources of error and bias remain, notably with topography, and where
their variation is large relative to the top-of-canopy height (e.g., over rugged topography), it might be
necessary to use more complex approaches, including machine learning. Nevertheless, if precise spatial
measurements are required, 3-D models must be carefully georeferenced, but given the challenges
of using GCPs in tropical forests, we suggest the use of differentially corrected UAV geolocations if
possible [54].



Remote Sens. 2019, 11, 928 13 of 16

The next few years are likely to see a step change in the quality of DTMs due to the increased
deployment of LiDAR sensors, including those mounted on UAVs (e.g., References [56,57]), and
the completion of a global LiDAR survey (i.e., from the Global Ecosystem Dynamics Investigation;
GEDI; [58]). These are sure to be invaluable for measuring forest conditions, but we have demonstrated
the ability of SfM to accurately measure the top-of-canopy-height and aboveground biomass.
In addition, low operational costs and the integration of high-resolution structural and spectral
information are certain to drive its increased use and development [19]. We expect a critical future
direction to be the fusion of high-quality terrain models and high-resolution SfM surface models [39].
However, even without LiDAR fusion, it may be possible to further improve canopy measurements.
Poorly illuminated and occluded features are not well-reconstructed by SfM [22,23,48]; therefore,
better images of the understory, either captured obliquely (e.g., References [49,59]) or through
increased photographic exposure [26], should improve tie point detection in the understory and
lead to reduced error.
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